

# [취업폭격기 Zeromini 위클리 개념 폭격 #14]

■ 과목 : 컴퓨터일반

🔥 참고문제 : 2023년 해양경찰 채용문제

🌝 문제 수정 버전 : V 1.0



# 1. RAID 레벨과 거울(Mirroring) 디스크

문제: 거울(Mirroring) 디스크와 관련된 RAID 레벨은 무엇인가요?

**해설**: RAID 레벨 1은 거울(Mirroring) 디스크를 사용하여 데이터를 두 개의 디스크에 동시에 저장합니다. 이 방식은 하나의 디스크가 고장 나더라도 다른 디스크에 동일한 데이터가 저장되어 있어 데이터 손실을 방지하고 시스템의 가용성을 높입니다.

## 2. CPU와 주기억장치의 속도 차이

문제: CPU와 주기억장치 사이의 속도 차이를 어떻게 해결하는 기술은 무엇인가요? 해설: CPU와 주기억장치 사이의 속도 차이를 해결하기 위해 캐시 메모리를 사용합니다. 캐시 메모리는 CPU와 주기억장치 사이에 위치하며, 빠른 데이터 전송을 가능하게 해서 CPU의 성능을 향상시킵니다.

#### 3. SPOOL 기술

문제: SPOOL 기술이 해결하는 주요 문제점은 무엇인가요?

해설: SPOOL(Simultaneous Peripheral Operations On-Line) 기술은 다중 프로그래밍 환경에서 발생하는 자원 접근의 병목 문제를 해결합니다. 이 기술은 출력 장치나 저장 공간 의 효율적인 사용을 가능하게 하여 시스템 성능을 향상시킵니다.

#### 4. TCP/IP의 신뢰성 있는 계층

문제: TCP/IP에서 신뢰성 있는 통신기능을 제공하는 계층은 무엇인가요?

해설: TCP/IP의 전송 계층(Transport Layer)은 신뢰성 있는 통신을 제공합니다. 이 계층에서는 흐름 제어, 오류 제어, 패킷 재전송 등의 기능을 통해 데이터의 안정적인 전송을 보장합니다.

#### 5. 부하 분산 스위치

**문제**: TCP/UDP 포트를 기반으로 사용자의 요구를 여러 대의 서버로 부하를 분산하는 스위치 장비는 무엇인가요?

해설: L4 스위치(Layer 4 Switch)는 TCP/UDP 포트 정보를 기반으로 부하 분산을 수행합니다. 이 장비는 네트워크 트래픽을 분석하여 여러 서버에 고르게 분배, 서버의 부하를 줄이고 전체 시스템 성능을 향상시킵니다.

# 6. 폰 노이만 아키텍처

문제: 폰 노이만이 제안한 컴퓨터 구조의 기본 사상은 무엇인가요?

**해설**: 폰 노이만 아키텍처의 기본 사상은 "프로그램 내장방식(Stored Programming)"입니다. 이는 모든 프로그램과 데이터를 주기억장치에 저장하고, 중앙 처리장치가 이를 자동으로실행하는 방식을 의미합니다. 이로 인해 프로그램의 수정과 저장이 용이해졌습니다.

## 7. XOR 연산

**문제**: 이진수 A=10111000, B=11000000일 때, A XOR B의 결과는 무엇인가요? **해설**: A XOR B의 결과는 01111000입니다. XOR 연산은 두 비트가 다를 경우 1을, 같을 경우 0을 반환합니다. 이 연산은 암호화, 오류 검출 등 다양한 분야에서 활용됩니다.

## 8. 시스템 버스

**문제**: 컴퓨터 중앙처리장치와 기억장치 간의 통신을 위해 설치한 시스템 버스 중 아닌 것은 무엇인가요?

**해설**: 가속 버스(Accelerated Graphics Port, AGP)는 시스템 버스에 포함되지 않습니다. 일반적으로 시스템 버스에는 데이터 버스, 주소 버스, 제어 버스가 포함됩니다. 이들은 CPU 와 메모리, 입출력 장치 간의 데이터 전송을 담당합니다.

#### 9. CPU 내 레지스터

**문제**: 다음 중 CPU 내 레지스터가 아닌 것은 무엇인가요? MBR, MAR, IR, DR **해설**: DR(Disk Register)은 CPU 내 레지스터가 아닙니다. MBR(Memory Buffer Register), MAR(Memory Address Register), IR(Instruction Register)은 CPU 내에서 데 이터 처리와 명령어 실행을 위해 사용되는 레지스터입니다.

#### 10. 가장 먼 주소

문제: TCP/IP 인터넷 프로토콜에서 사용되는 주소 중 거리가 가장 먼 것은 무엇인가요? 해설: TCP/IP 프로토콜에서 거리가 가장 먼 주소는 일반적으로 "브로드캐스트 주소"입니다. 이 주소는 네트워크 내 모든 장치에 데이터를 전송하는 데 사용되며, 이를 통해 네트워크 내의 모든 장치에 당시에 메시지를 전달할 수 있습니다.

#### 11. OSI 7계층 모델

문제: OSI 7계층 모델에서 데이터 링크 계층의 주요 역할은 무엇인가요? 해설: 데이터 링크 계층은 물리 계층을 통해 전송되는 데이터의 오류 검출 및 흐름 제어를 담당합니다. 이 계층에서는 MAC 주소를 사용하여 프레임을 생성하고, 이를 통해 물리적인 네트워크 내에서 데이터의 안전한 전송을 보장합니다.

# 12. 라우터와 스위치의 차이

문제: 라우터와 스위치의 기본적인 차이점을 설명해주세요.

해설: 라우터는 네트워크 계층에서 작동하여 다양한 네트워크를 연결하고, IP 주소를 기반으로 패킷을 전송합니다. 스위치는 데이터 링크 계층에서 작동하여 같은 로컬 네트워크 내의 장치들을 연결하고, MAC 주소를 기반으로 프레임을 전송합니다.

## 13. 클라우드 컴퓨팅

문제: 클라우드 컴퓨팅의 주요 장점 중 하나를 설명해주세요.

해설: 클라우드 컴퓨팅의 주요 장점 중 하나는 확장성(Scalability)입니다. 사용자가 필요에 따라 자원을 즉시 확장하거나 축소할 수 있어, 비용 효율성과 유연성이 뛰어납니다.

## 14. 가상화 기술

문제: 하이퍼바이저가 하는 역할은 무엇인가요?

해설: 하이퍼바이저는 가상화 환경에서 여러 운영체제를 동시에 실행할 수 있게 해주는 소프 트웨어입니다. 이를 통해 하나의 물리적 서버에서 여러 가상 서버를 운영할 수 있어, 자원을 효율적으로 사용할 수 있습니다.

#### 15. 블록체인의 무결성

문제: 블록체인에서 무결성을 보장하는 기술은 무엇인가요?

해설: 블록체인에서 무결성을 보장하는 기술은 암호학적 해시 함수입니다. 각 블록은 이전 블록의 해시 값을 포함하여 연결되어 있어, 하나의 블록이 변경되면 그 이후의 모든 블록의 해시 값도 변경되어야 하므로 데이터의 무결성이 보장됩니다.

#### 16. 웹 브라우저의 쿠키

문제: 웹 브라우저의 쿠키(cookie)의 주요 역할은 무엇인가요?

해설: 웹 브라우저의 쿠키는 사용자의 세션 정보를 저장하여 웹 사이트가 사용자를 식별하고, 사용자의 환경 설정이나 로그인 상태 등을 유지할 수 있게 도와줍니다.

## 17. 인터럽트의 역할

문제: 인터럽트가 시스템에서 하는 역할은 무엇인가요?

해설: 인터럽트는 CPU에게 어떤 사건이 발생했음을 알리는 신호입니다. 이를 통해 CPU는 현재 실행 중인 작업을 일시 중단하고, 발생한 사건을 처리한 후 원래 작업을 재개할 수 있습니다.

# 18. 메모리 계층 구조

문제: 메모리 계층 구조에서 캐시 메모리가 위치하는 곳은 어디인가요?

해설: 메모리 계층 구조에서 캐시 메모리는 CPU와 주기억장치 사이에 위치합니다. 이를 통해 CPU의 데이터 접근 속도를 높여 시스템 성능을 향상시킵니다.

# 19. 스택과 큐의 차이

문제: 스택과 큐의 데이터 입출력 방식에 대한 차이를 설명해주세요.

**해설**: 스택은 LIFO(Last In, First Out) 방식으로 데이터를 입출력합니다. 즉, 가장 마지막에 들어간 데이터가 먼저 나옵니다. 반면에 큐는 FIFO(First In, First Out) 방식으로 데이터를 입출력합니다. 처음 들어간 데이터가 먼저 나옵니다.

## 20. 정적 할당과 동적 할당

문제: 정적 할당과 동적 할당의 차이점을 설명해주세요.

**해설**: 정적 할당은 컴파일 시간에 메모리 공간이 할당되며, 프로그램 실행 도중에는 변경할

수 없습니다. 동적 할당은 실행 시간에 메모리 공간이 할당되며, 필요에 따라 크기를 변경할수 있습니다.

#### 21. 데드락의 조건

문제: 데드락이 발생하는 네 가지 조건을 나열해주세요.

**해설**: 데드락이 발생하는 조건은 상호 배제, 점유와 대기, 비선점, 순환 대기입니다. 이 네 가지 조건이 동시에 만족할 때 시스템은 데드락 상태에 빠질 수 있습니다.

#### 22. 페이지 교체 알고리즘

문제: 페이지 교체 알고리즘 중 LRU 알고리즘의 작동 원리를 설명해주세요.

**해설**: LRU(Least Recently Used) 알고리즘은 가장 오랫동안 사용되지 않은 페이지를 교체하는 방식입니다. 이를 통해 최근에 사용된 페이지는 메모리에 머무르게 하여 효율성을 높입니다.

#### 23. RAID 5

**문제**: RAID 5의 특징에 대해 설명해주세요.

**해설**: RAID 5는 스트라이핑과 패리티를 결합한 방식입니다. 데이터와 패리티 정보가 교차로 저장되어, 하나의 디스크가 고장 나더라도 데이터를 복구할 수 있습니다.

## 24. 컴파일러와 인터프리터

문제: 컴파일러와 인터프리터의 차이점을 설명해주세요.

**해설**: 컴파일러는 소스 코드를 한 번에 기계어로 변환한 후 실행합니다. 인터프리터는 소스 코드를 한 줄씩 읽어가며 즉시 실행합니다. 컴파일러는 실행 속도가 빠르지만, 디버깅이 어렵습니다. 인터프리터는 실행 속도가 느리지만, 디버깅이 쉽습니다.

# 25. 프로세스와 스레드

문제: 프로세스와 스레드의 차이점을 설명해주세요.

해설: 프로세스는 독립적인 메모리 공간과 자원을 가지는 실행 단위입니다. 스레드는 프로세스 내에서 실행되는 더 작은 단위로, 같은 프로세스의 스레드끼리는 메모리와 자원을 공유합니다.

# 26. 빅 엔디안과 리틀 엔디안

문제: 빅 엔디안과 리틀 엔디안의 차이점을 설명해주세요.

해설: 빅 엔디안은 바이트 순서가 큰 쪽(상위 바이트)부터 작은 쪽(하위 바이트)으로 저장됩니다. 리틀 엔디안은 반대로 작은 쪽(하위 바이트)부터 큰 쪽(상위 바이트)으로 저장됩니다. 이 둘은 데이터의 바이트 순서를 다르게 처리하기 때문에 호환성 문제가 발생할 수 있습니다.

#### 27. 트랜잭션의 ACID 속성

문제: 데이터베이스에서 트랜잭션의 ACID 속성에 대해 설명해주세요.

**해설**: ACID는 원자성(Atomicity), 일관성(Consistency), 고립성(Isolation), 지속성 (Durability)을 의미합니다. 이 속성들은 데이터베이스 트랜잭션의 안정성과 신뢰성을 보장하기 위한 기본 원칙입니다.

#### 28. 라운드 로빈 스케줄링

문제: 라운드 로빈 스케줄링의 작동 원리를 설명해주세요.

**해설**: 라운드 로빈 스케줄링은 각 프로세스에 동일한 시간 할당량을 부여하여 순환하면서 실행합니다. 이 방식은 공평성이 높지만, CPU 사용률이 낮을 수 있습니다.

#### 29. 멀티태스킹

문제: 멀티태스킹의 주요 장점은 무엇인가요?

해설: 멀티태스킹의 주요 장점은 자원을 효율적으로 사용하여 여러 작업을 동시에 처리할 수 있다는 것입니다. 이를 통해 사용자는 빠른 응답 시간을 경험하고, 시스템은 높은 처리량을 달성할 수 있습니다.

#### 30. 메모리 누수

문제: 메모리 누수가 발생하는 원인을 하나 예로 들어 설명해주세요.

**해설**: 메모리 누수는 프로그램이 할당한 메모리를 제대로 해제하지 않아 발생합니다. 예를 들어, 동적 할당한 메모리에 대한 포인터를 잃어버리면 그 메모리는 해제되지 않고 계속 차지하게 되어 메모리 누수가 발생합니다.

## 31. 웹 서버와 애플리케이션 서버

문제: 웹 서버와 애플리케이션 서버의 차이점을 설명해주세요.

해설: 웹 서버는 HTTP 프로토콜을 기반으로 클라이언트의 요청을 처리하고 정적인 웹 페이지를 제공합니다. 애플리케이션 서버는 비즈니스 로직을 처리하고 동적인 웹 페이지를 생성하여 웹 서버에 전달합니다.

### 32. 소프트웨어 개발 방법론

문제: 애자일(Agile) 소프트웨어 개발 방법론의 핵심 원칙은 무엇인가요?

**해설**: 애자일 방법론의 핵심 원칙은 고객의 요구사항에 빠르고 유연하게 대응하는 것입니다. 이를 위해 개발 과정을 작은 단위로 나누고, 지속적인 피드백을 통해 개선을 이룹니다.

# 33. 객체지향 프로그래밍의 캡슐화

문제: 객체지향 프로그래밍에서 캡슐화의 중요성에 대해 설명해주세요.

**해설**: 캡슐화는 객체의 내부 데이터와 메서드를 하나로 묶어 외부의 접근을 제한합니다. 이

를 통해 데이터의 무결성을 유지하고, 객체 간의 상호작용을 단순화시킵니다.

#### 34. DNS의 역할

문제: DNS(Domain Name System)의 주요 역할은 무엇인가요?

**해설**: DNS는 도메인 이름을 IP 주소로 변환하는 역할을 합니다. 이를 통해 사용자는 복잡한 IP 주소 대신 친숙한 도메인 이름을 사용하여 웹 사이트에 접속할 수 있습니다.

#### 35. IPv6의 필요성

문제: IPv6가 도입된 주요 이유는 무엇인가요?

**해설**: IPv6는 IPv4 주소 공간의 한계를 해결하기 위해 도입되었습니다. IPv4의 주소 공간이 점점 부족해지면서, 더 많은 장치와 네트워크를 지원하기 위해 IPv6가 필요하게 되었습니다.

#### 36. 쿼리 최적화

문제: 데이터베이스에서 쿼리 최적화의 중요성에 대해 설명해주세요.

해설: 쿼리 최적화는 데이터베이스의 성능을 향상시키는 중요한 과정입니다. 잘못 작성된 쿼리는 시스템에 불필요한 부하를 주고, 응답 시간을 늦출 수 있습니다.

#### 37. 머신 러닝 알고리즘

**문제**: 머신 러닝에서 사용되는 지도학습(Supervised Learning)과 비지도학습 (Unsupervised Learning)의 차이점은 무엇인가요?

**해설**: 지도학습은 레이블이 있는 데이터를 사용하여 모델을 학습시킵니다. 비지도학습은 레이블이 없는 데이터를 사용하여 모델을 학습시키며, 데이터의 숨겨진 패턴이나 구조를 찾는데 사용됩니다.

# 38. 컴퓨터 보안의 CIA 삼각형

문제: 컴퓨터 보안에서 CIA 삼각형의 각 요소에 대해 설명해주세요.

해설: CIA 삼각형은 기밀성(Confidentiality), 무결성(Integrity), 가용성(Availability)을 의미합니다. 이 세 가지 요소는 컴퓨터 시스템의 보안을 유지하기 위한 기본 원칙입니다.

# 39. 웹 크롤링의 윤리적 고려사항

문제: 웹 크롤링을 할 때 윤리적으로 고려해야 할 사항은 무엇인가요?

해설: 웹 크롤링을 할 때는 웹사이트의 이용 약관을 준수하고, 서버에 과도한 부하를 주지 않도록 주의해야 합니다. 또한, 크롤링한 데이터를 상업적으로 이용할 경우 저작권 문제가 발생할 수 있으므로 주의가 필요합니다.

# 40. 컴퓨터 네트워크의 토폴로지

문제: 스타 토폴로지와 링 토폴로지의 차이점을 설명해주세요.

해설: 스타 토폴로지는 중앙 노드에 모든 노드가 연결되어 있습니다. 이로 인해 네트워크의 확장성이 높고, 하나의 노드가 고장 나도 네트워크가 유지됩니다. 링 토폴로지는 노드가 원형으로 연결되어 있으며, 데이터가 순환하면서 전달됩니다. 이로 인해 하나의 노드가 고장나면 네트워크가 중단될 수 있습니다.